电工优优今天要和大家分享的MOS管阈值电压与沟长和沟宽的关系相关信息,接下来我将从mos管阈值电压计算公式,mos管阈值电压与温度的关系,mos管阈值电压的影响因素这几个方面来介绍。
台厂杰力看好车用需求,mosfet市场仍需求大于供给
阈值电压 (Threshold voltage):通常将传输特性曲线中输出电流随输入电压改变而急剧变化转折区的中点对应的输入电压称为阈值电压。在描述不同的器件时具有不同的参数。如描述场发射的特性时,电流达到10mA时的电压被称为阈值电压。
如MOS管,当器件由耗尽向反型转变时,要经历一个 Si 表面电子浓度等于空穴浓度的状态。此时器 件处于临界导通状态,器件的栅电压定义为阈值电压,它是MOSFET的重要参数之一 。MOS管的阈值电压等于背栅(backgate)和源极(source)接在一起时形成沟道(channel)需要的栅极(gate)对source偏置电压。如果栅极对源极偏置电压小于阈值电压,就没有沟道(channel)。
MOS管阈值电压与沟长和沟宽的关系
关于 MOSFET 的 W 和 L 对其阈值电压 Vth 的影响,实际在考虑工艺相关因素后都是比较复杂,但是也可以有一些简化的分析,这里主要还是分析当晶体管处在窄沟道和短沟道情况下,MOSFET 耗尽区的电荷的变化,从而分析其对晶体管的阈值电压的作用。
Narrow channel 窄沟的分析
从左图可以看到,决定 MOSFET 阈值电压的耗尽层电荷,并不仅是在栅下区域的电荷 Qch;实际上在图中耗尽区左右与表面相接处,还需要有额外的电荷 Qchw。
在晶体管的沟宽 W 较大时,Qchw 这一额外的电荷可以忽略;而当沟宽 W 较小时,Qchw 不能再忽略,使得等效的耗尽层电荷密度增加,MOS 管的阈值电压升高,即如上面右图所示。
实际上,窄沟导致的阈值电压的变化也可以理解为在沟宽 W 方向的边缘电场的电力线出现在沟道以外,因此需要更多的栅电压来维持沟道开启。因此窄沟的效应实际上与具体的集成电路工艺,例如器件采用的隔离方式和隔离区域的掺杂浓度等关系很大。
对于 STI (shallow trench isolation) 隔离方式的 MOSFET, 由于 STI wall 的作用,沟宽 W 方向的边缘电场的电力线实际上是在沟道方向集中,因此会出现所谓的 inverse narrow-width effect,也即是随着沟宽 W 的减小,阈值电压随之减小。
Short channel 短沟的分析
如上面左图所示, 晶体管中耗尽层电荷包括从源到漏的所有电荷。 但是, 实际上在靠近源和漏端的部分电荷 Qchl , 不再直接受控于栅, 而是由源和漏来控制。 因此 Qchl 是不应该包含在阈值电压的计算中的。
类似之前的分析, 当沟长 L 较小时, 需要考虑 Qchl 影响, 使等效的耗尽层电荷密度减小, MOS 管的阈值电压减小,即如上面右图所示。
在具体工艺中, 由于存在沟道的非均匀掺杂等现象,实际上会使得有 reverse short-channel effect 的出现,即随着 MOSFET 的沟长 L 的减小,阈值电压会先小幅升高,之后 L 进一步减小时,阈值电压下降,并且此时的阈值电压对沟长的变化更为敏感。
关于MOSFET就介绍完了,您有什么想法可以联系小编。
以上就是"电工优优"为大家介绍的mos管阈值电压计算公式的相关信息,想了解更多"MOS管阈值电压与沟长和沟宽的关系,mos管阈值电压计算公式,mos管阈值电压与温度的关系,mos管阈值电压的影响因素"相关知识,请收藏电工无忧吧。