反激式开关电源电路图大全(高频变压器/反激式转换器/双环路反馈系统)

发布日期:2023-01-13
反激式开关电源电路图大全(高频变压器/反激式转换器/双环路反馈系统)

电工优优今天要和大家分享的反激式开关电源电路图大全(高频变压器/反激式转换器/双环路反馈系统)相关信息,接下来我将从反激式开关电源电路,反激式开关电源电路图,反激式开关电源电路设计报告这几个方面来介绍。

反激式开关电源设计培训 开关电源

反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高电平时输出线路中的串联的电感为放电状态,以此驱动负载。

反激式开关电源原理--工作模式

反激式开关电源的电路结构比较简单,在小功率电路中应用非常广泛,在15kw光伏逆变器中用到的两个电源都是这种结构。反激式开关电源有三种工作模式:连续模式、非连续模式以及临界模式。在非连续工作模式中,功率管零电流开通,开通损耗小,而副边二极管零电流关断,可以不考虑反向恢复问题,对EMC会有一些好处。

反激式开关电源电路图(一)

在开关芯片的漏极D 侧可以利用VDZ 和VD 两个二极管对高频变压器的漏感产生的尖峰电压进行箝位,可保护μ的D-S 极间不被击穿。例如VDZ 可以选用瞬态电压抑制器P6K200, 其反向击穿电压为200 V.VD 采用反向耐压为600 V 的UF4005($0.0444) 型超快恢复二极管,亦称阻塞二极管。

图6给出了由TOPSwitch 构成的反激式电源的原理图。其工作过程如下: 输入交流电经整流桥BR1 整流后再经电容C1 滤波,变为脉动的直流电。反激式变压器与TOPSwitch 将存储于电容C1 的能量传递给负载。当TOPswitch 开关管导通时,电容C1两端的电压加到反激变压器的原边,流过原边绕组的电流线性增加( 如若在MOSFET 开关管导通的瞬间变压器副边电流不为零,则由于副边感应电势反向,二极管D2 截止,副边电流变为零,然而磁芯内的能量不能突变,故原边电流跃变为副边电流的1/ K,K 为变压器变比),变压器储存能量; 当MOSFET 开关管关断时,电感原边电流由于没有回路( 此时,稳压管VR1的击穿电压因高于原变压器的感应电势而截止) 而突变为零,变压器通过副边续流,副边电流为TOPswitch 开关管关断时原边电流的K 倍,副边绕组通过二极管D2 对电容C2 充电,此后,流过变压器副边的电流线性下降。二极管D1 与稳压管VR1 并接于变压器的原边以吸收由于变压器原边的漏感而产生的高压毛刺。电阻R1、稳压管V R2、光耦U2 与电容C5 构成了电压反馈电路以保证输出电压稳定。电阻R2 与VR2 构成一假负载,以保证当电源空载或轻载时输出电压稳定。电感L1 与电容C3 构成LC 滤波器以防止输出电压脉动过大。二极管D3 与电容C4 构成一整流电路以提供光耦U2 光电三极管的偏置电压。电感L2 、电容C6 和C7 用于降低系统的电磁干扰( EMI) 。

图6 反激式电源的应用原理图

图7分别给出了输入电压220 V ( 交流),输出功率为40 W; 输入电压85 V ( 交流),输出功率为24 W和输入电压85 V( 交流),输出功率为40 W 时的输出电压波形。

图7 不同电压输入条件下的电压仿真输出波形

反激式开关电源电路图(二)

单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

反激式开关电源电路图(三)

控制电路基于7535+431+817的方案,调节环路参数,使其满足参数要求。R104,C16和D9组成RCD吸收电路,吸收漏感能力。R81,R82和C19组成整流管的吸收电路,可以降低辐射EMC。

调大C16,可以降低Vds的过冲电压,调低R104可以更充分地吸收漏感能量,过低会造成过吸收,增大系统热功耗,“相生相克”。

图一过压保护

图二控制电路

反激式开关电源电路图(四)

开关电源电路图如图2所示。在此功率转换电路中,采用单端反激式变换器,单端是因为其高频变压器的磁芯只工作在第一象限。按变压器的副边开关整流器二极管的接线方式不同,单端变换器可分为两种:正激式与反激式。原边主功率开关管与副边整流管的开关状态相反(开关管导通时,副边的整流二极管截止)称为单端反激式。当原边加到高电平激励脉冲使Q1导通,直流输入高频变压器的原边两端,此时因副边是上负下正,使整流二极管截止;当驱动脉冲为低电平使Q1截止,原边两端极性反向,使副边绕组两端变为上正下负,则整流二极管被正向导通,此后变压器副边的磁能向负载释放。因此单端反激式变换器只是在原边Q1导通时储存能量,当它截止时才向负载释放,故高频变压器在开关过程中,既起变压隔离作用,又是电感储能元件。

在交流电源的输入端接入的电磁干扰滤波器,由共模扼流圈L1、C2和C3构成,C2和C3的中点应接地,用来抑制共模干扰.C1用来滤波,滤除串模干扰,电容量较大。鉴于开关管 BU508A在关断的瞬间,高频变压器的漏感会产生尖峰电压,利用C8、R3和D1组成钳位电路,C9的作用是滤除开关管集电极的尖峰电压,决定自动重启动频率,C9和R4一起对控制回路进行补偿,同时C9和R4还起原边快速复位的作用,能有效的保护开关管不被损坏。

图2 开关电源电路图

反激式开关电源电路图(五)

图1所示为常规的硬开关反激式转换器电路。这种不连续模式反激式转换器(DCM)一个工作周期分为三个工作区间:(t0~t1)为变压器向负载提供能量阶段,此时输出二极管导通,变压器初级的电流通过NpNs的耦合流向输出负载,逐渐减小。

MOSFET电压由三部分叠加而成:输入直流电压VDC、输出反射电压VFB、漏感电压VLK。到t1时刻,输出二极管电流减小到0,此时变压器的初级电感和和寄生电容构成一个弱阻尼的谐振电路,周期为2πLC。在停滞区间(t1~t2),寄生电容上的电压会随振荡而变化,但始终具有相当大的数值。当下一个周期t2节点,MOSFET导通时间开始时,寄生电容(COSS和CW)上电荷会通过MOSFET放电,产生很大的电流尖峰。由于这个电流出现时MOSFET存在一个很大的电压,该电流尖峰因此会做成开关损耗。此外,电流尖峰含有大量的谐波含量,从而产生EMI。

反激式开关电源电路图(六)

单端反激开关电源采用的是稳定性很好的双环路反馈的控制系统,所以它可以通过开关电源的PWM迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和低级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。这种反馈控制电路的最大特点是:在输进电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。

关于反激式开关电源,开关电源就介绍完了,您有什么想法可以联系小编。

以上就是"电工优优"为大家介绍的反激式开关电源电路的相关信息,想了解更多"反激式开关电源电路图大全(高频变压器/反激式转换器/双环路反馈系统),反激式开关电源电路,反激式开关电源电路图,反激式开关电源电路设计报告"相关知识,请收藏电工无忧吧。