电工优优今天要和大家分享的igbt三相桥式逆变器驱动电路图相关信息,接下来我将从igbt三相桥式逆变电路应用,igbt三相桥式逆变电路,igbt三相桥式电路视频这几个方面来介绍。
igbt三相桥式逆变器驱动电路图
在IGBT中,用一个MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。在中小功率、低噪音和高性能的电源、逆变器、不间断电源(UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。
功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。图1为一典型的IGBT驱动电路原理示意图。因为IGBT栅极?发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
对IGBT驱动电路的一般要求[2][3]:
1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。在任何情况下,开通时的栅极驱动电压,应该在12~20V之间。当栅极电压为零时,IGBT处于断态。但是,为了保证IGBT在集电极?发射极电压上出现dv/dt噪声时仍保持关断,必须在栅极上施加一个反向关断偏压,采用反向偏压还减少了关断损耗。反向偏压应该在-5~-15V之间。
2)串联栅极电阻(Rg)选择适当的栅极串联电阻对IGBT栅极驱动相当重要。IGBT的开通和关断是通过栅极电路的充放电来实现的,因此栅极电阻值将对IGBT的动态特性产生极大的影响。数值较小的电阻使栅极电容的充放电较快,从而减小开关时间和开关损耗。所以,较小的栅极电阻增强了器件工作的耐固性(可避免dv/dt带来的误导通),但与此同时,它只能承受较小的栅极噪声,并可能导致栅极-发射极电容和栅极驱动导线的寄生电感产生振荡。
3)栅极驱动功率IGBT要消耗来自栅极电源的功率,其功率受栅极驱动负、正偏置电压的差值ΔUGE、栅极总电荷QG和工作频率fs的影响。电源的最大峰值电流IGPK为:
在本文中,我们将对几种最新的用于IGBT驱动的集成电路做一个详细的介绍,讨论其使用方法和优缺点及使用过程中应注意的问题。
2几种用于IGBT驱动的集成芯片
2.1TLP250(TOSHIBA公司生产)
在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。这里主要针对TLP250做一介绍。
TLP250包含一个GaAlAs光发射二极管和一个集成光探测器,8脚双列封装结构。适合于IGBT或电力MOSFET栅极驱动电路。图2为TLP250的内部结构简图,表1给出了其工作时的真值表。
TLP250的典型特征如下:
1)输入阈值电流(IF):5mA(最大);
2)电源电流(ICC):11mA(最大);
3)电源电压(VCC):10~35V;
4)输出电流(IO):±0.5A(最小);
5)开关时间(tPLH/tPHL):0.5μs(最大);
6)隔离电压:2500Vpms(最小)。
表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。
注:使用TLP250时应在管脚8和5间连接一个0.1μF的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过1cm。
图3和图4给出了TLP250的两种典型的应用电路。
在图4中,TR1和TR2的选取与用于IGBT驱动的栅极电阻有直接的关系,例如,电源电压为24V时,TR1和TR2的Icmax≥24/Rg。
以上就是"电工优优"为大家介绍的igbt三相桥式逆变电路应用的相关信息,想了解更多"igbt三相桥式逆变器驱动电路图,igbt三相桥式逆变电路应用,igbt三相桥式逆变电路,igbt三相桥式电路视频"相关知识,请收藏电工无忧吧。