电工优优今天要和大家分享的MOS管耗散功率的计算相关信息,接下来我将从mos管耗散功率的实际意义,mos管耗散功率大好还是小好,mos管耗散功率越大越好吗这几个方面来介绍。
8-1991 发射管电性能测试方法 阳极最大耗散功率和阳极过载耗散功率的
MOS管的功率,一般是指Maximum Power Dissipation--Pd,最大的耗散功率,具体是指MOS元件的容许损失,可从产品的热阻上求得。当Tc=25度时,通过附加最大容许损耗Pd,则变为Tc=150度max. Pd=(Tcmax-Tc)/Rth(ch-c)
MOS管大功率和小功率也只是一个相对的说法,就比如我们平时说高个子可能是1.7,1.8,也可能是1.9;那矮个子可能是1.4,1.5,也可能是1.7,1.8,对于高度为2.0的人来说。
一般来讲,电流大于10A的,电压高于500V的可以称为大功率,但不绝对。
MOS的功耗是指MOS在电路应用中的损耗,比如导通损耗,开关损耗等,当然设计及应用的时候这个值一定是远小于MOS管的Pd.
MOS管耗散功率的计算
在条件相同的情况下,降低开关频率一定可以降低MOS的功耗。
MOS管的功耗主要有开关损耗和通态损耗。
首先要计算通态损耗的影响。Pcond=Idsrms*Idsrms*RDSon*Dmax,
例如:Idsrms=11A时,Dmax接近100%,RDSon取8豪欧,Pcond约1W。
再估算开关损耗。PSW=VDSoff*Idsrms*(tr+tf)*f/2。 例如:tr+tf=600ns,f=15625,VDSoff取24V,PSW=1.24W
Pmos=Pcond+PSW=2.24w。
如果MOS采用单个IRF3205 ,不加散热片时的热阻是62度/W。此时的温升是62*2.24=138度。 所以不管其他的条件,在这应用里必须加装良好的散热器。
由开关损耗的公式可以看出,反电动势的抑制的确是重要的,必须采用足够容量的低ESR的电解电容安装在MOS附件吸收反电动势,由于流过该电容的电流波纹很大,电容容易发热。 如果反电动势吸收不好,还会造成MOS关断不良的情况,需要用示波器实际观察。
MOS管功耗计算
计算功率耗散
要确定一个MOSFET场效应管是否适于某一特定应用,需要对其功率耗散进行计算。耗散主要包括阻抗耗散和开关耗散:PDDEVICETOTAL=PDRESISTIVE+PDSWITCHING
由于MOSFET的功率耗散很大程度上取决于其导通电阻(RDS(ON)),计算RDS(ON)看似是一个很好的着手之处。但MOSFET的导通电阻取决于结温TJ。返过来,TJ又取决于MOSFET中的功率放大器耗散和MOSFET的热阻(ΘJA)。这样,很难确定空间从何处着手。由于在功率耗散计算中的几个条件相互依赖,确定其数值时需要迭代过程(图1)。
这一过程从首先假设各MOSFET的结温开始,同样的过程对于每个MOSFET单独进行。MOSFET的功率耗散和允许的环境温度都要计算。
当允许的周围温度达到或略高于电源封装内和其供电的电路所期望的最高温度时结束。使计算的环境温度尽可能高看似很诱人,但这通常不是一个好主意。这样做将需要更昂贵的MOSFET、在MOSFET下面更多地使用铜片,或者通过更大或更快的风扇使空气流动。所有这些都没有任何保证。
在某种意义上,这一方案蒙受了一些“回退”。毕竟,环境温度决定MOSFET的结温,而不是其他途径。但从假设结温开始所需要的计算,比从假设环境温度开始更易于实现。
对于开关MOSFET和同步整流器两者,都是选择作为此迭代过程开始点的最大允许裸片结温(TJ(HOT))。大多数MOSFET数据参数页只给出25°C的最大
RDS(ON),,但近来有一些也提供了125°C的最大值。MOSFETRDS(ON)随着温度而提高,通常温度系数在0.35%/°C至0.5%/°C的范围内(图2)。如果对此有所怀疑,可以采用更悲观的温度系数和MOSFET在25°C规格参数(或125°C的规格参数,如果有提供的话)计算所选择的TJ(HOT)处的最大RDS(ON):RDS(ON)HOT=RDS(ON)SPEC×[1+0.005×(TJ(HOT)?TSPEC)]
其中,RDS(ON)SPEC为用于计算的MOSFET导通电阻,而TSPEC为得到RDS(ON)SPEC的温度。如下描述,用计算得到的RDS(ON)HOT确定MOSFET和同步整流器的功率耗散。讨论计算各MOSFET在假定裸片温度的功率耗散的段落之后,是对完成此迭代过程所需其他步骤的描述。
同步整流器的耗散
对于除最大负载外的所有负载,在开、关过程中,同步整流器的MOSFET的漏源电压通过捕获二极管箝制。因此,同步整流器没有引致开关损耗,使其功率耗散易于计算。需要考虑只是电阻耗散。
最坏情况下损耗发生在同步整流器负载系数最大的情况下,即在输入电压为最大值时。通过使用同步整流器的RDS(ON)HOT和负载系数以及欧姆定律,就可以计算出功率耗散的近似值:
PDSYNCHRONOUSRECTIFIER=[ILOAD2×RDS(ON)HOT]×[1》-(VOUT/VIN(MAX))]
开关MOSFET的耗散
开关MOSFET电阻损耗的计算与同步整流器的计算相仿,采用其(不同的)负载系数和RDS(ON)HOT:PDRESISTIVE=[ILOAD2×RDS(ON)HOT]×(VOUT/VIN)
由于它依赖于许多难以定量且通常不在规格参数范围、对开关产生影响的因素,开关MOSFET的开关损耗计算较为困难。在下面的公式中采用粗略的近似值作为评估一个MOSFET的第一步,并在以后在实验室内对其性能进行验证:PDSWITCHING=(CRSS×VIN2×fSW×ILOAD)/IGATE 其中CRSS为MOSFET的反向转换电容(一个性能参数),fSW为开关频率,而IGATE为MOSFET的启动阈值处(栅极充电曲线平直部分的VGS)的MOSFET栅极驱动的吸收电流和的源极电流。
一旦根据成本(MOSFET的成本是它所属于那一代产品的非常重要的功能)将选择范围缩小到特定的某一代MOSFET,那一代产品中功率耗散最小的就是具有相等电阻损耗和开关损耗的型号。若采用更小(更快)的器件,则电阻损耗的增加幅度大于开关损耗的减小幅度;而采用更大(RDS(ON)低)的器件中,则开关损耗的增加幅度大于电阻损耗的减小幅度。
如果VIN是变化的,必须同时计算在VIN(MAX)和VIN(MIN)处的开关MOSFET的功率耗散。MOSFET最坏情况下功率耗散将出现在最小或最大输入电压处。耗散为两个函数的和:在VIN(MIN)(较高的负载系数)处达到最大的电阻耗散,和在VIN(MAX)(由于VIN2的影响)处达到最大的开关耗散。最理想的选择略等于在VIN极值的耗散,它平衡了VIN范围内的电阻耗散和开关耗散。
如果在VIN(MIN)处的耗散明显较高,电阻损耗为主。在这种情况下,可以考虑采用较大的开关MOSFET,或并联多个以达到较低的RDS(ON)值。但如果在VIN(MAX)处的耗散明显较高,则可以考虑减小开关MOSFET的尺寸(如果采用多个器件,或者可以去掉MOSFET)以使其可以更快地开关。
如果所述电阻和开关损耗平衡但还是太高,有几个处理方式:
改变题目设定。例如,重新设定输入电压范围;改变开关频率,可以降低开关损耗,且可能使更大、更低的RDS(ON)值的开关MOSFET成为可能;增大栅极驱动电流,降低开关损耗。MOSFET自身最终限制了栅极驱动电流的内部栅极电阻,实际上局限了这一方案;采用可以更快同时开关并具有更低RDS(ON)值和更低的栅极电阻的改进的MOSFET技术。
由于元器件选择数量范围所限,超出某一特定点对MOSFET尺寸进行精确调整也许不太可能,其底线在于MOSFET在最坏情况下的功率必须得以耗散。
热阻
再参考图1说明,确定是否正确选择了用于同步整流器和开关MOSFET的MOSFET迭代过程的下一个步骤。这一步骤计算每个MOSFET的环境空气温度,它可能导致达到假设的MOSFET结温。为此,首先要确定每个MOSFET的结与环境间的热阻(ΘJA)。
如果多个MOSFET并联使用,可以通过与计算两个或更多关联电阻的等效电阻相同的方法,计算其组合热阻。热阻也许难以估计,但测量在一简单PC板上的单一器件的ΘJA就相当容易,系统内实际电源的热性能难以预计,许多热源在竞争有限的散热通道。
让我们从MOSFET的ΘJA开始。对于单芯片SO-8MOSFET封装,ΘJA通常在62°C/W附近。对于其他封装,带有散热栅格或暴露的散热条,ΘJA可能在40°C/W和50°C/W之间(参见表)。计算多高的环境温度将引起裸片达到假设的TJ(HOT):TAMBIENT=TJ(HOT)-TJ(RISE)
如果计算的TAMBIENT比封装最大标称环境温度低(意味着封装的最大标称环境温度将导致超过假设的MOSFETTJ(HOT)),就要采取以下一种或所有措施: 提高假设的TJ(HOT)(HOT,但不要超过数据参数页给出的最大值;通过选择更合适的MOSFET,降低MOSFET功率耗散;或者,通过加大空气流动或MOSFET周围的铜散热片面积降低ΘJA。
然后重新计算。采用电子数据表以简化确定可接受的设计所要求的典型的多重叠代。
另一方面,如果计算的比封装最大标称环境温度高得多,就要采取以下一种或所有措施:
降低假设的TJ(HOT);减少用于MOSFET功率耗散的铜散热片面积;或者,采用不那么昂贵的MOSFET。
这些步骤是可选的,因为本案例中MOSFET不会由于超过设定温度而损坏。然而,在TAMBIENT比封装的最大温度高时,这些步骤可以减小板面积和成本。 该过程中最大的不准确性来源于ΘJA。仔细研读ΘJA规格参数相关的数据页说明。典型的规格说明假设器件安装于1平方英寸的2盎司铜片。铜片承担了大部分的散热,而铜片的大小对ΘJA有显著影响。
例如,采用1平方英寸的铜片,D-Pak的ΘJAD-Pak可能是50°C/W。但如果铜片就设在封装引脚下,ΘJA值将会加倍(参见表)。采用多个并联MOSFET,ΘJA主要依赖于它所安装的铜片面积。两个元器件的等效ΘJA可能是只有一个元器件时的一半,除非铜片的面积加倍。就是说,增加并联MOSFET而不同时增加铜片面积,将使RDS(ON)减半,但对ΘJA的改变小得多。
最后,ΘJA的规格参数假设铜片散热面积不需考虑其他元器件的散热。在高电流时,在功率路径上的每个元件,甚至是PC板上的铜材料都会产生热量。为避免对的MOSFET过度加热,需要仔细计估算实际物理环境能达到的ΘJA值;研究所选择的MOSFET提供的热参数信息;检查是否有空间用于增加额外的铜片、散热器和其他器件;确定增加空气流动是否可行;看看在假设的散热通道有没有其他明显的热源,并要估算一下附近元件和空间的加热或冷却作用。
三极管耗散功率的定义及计算方法
三极管耗散功率也是三极管集电极耗散参数PCM。是指为了使三极管安全工作对它的工作电压、电流与功率损耗的限制。
PCM决定于晶体管的温升。当硅管的温度大于150度、锗管的温度大于70度时,管子损坏特别明显,甚至烧毁。
如何计算三极管耗散功率
对于确定型号的晶体管,Pcm是一个确定值,即Pcm=ic*Uce=常数。
耗散功率和输出功率没有直接关系,是管子自身所能承受的损耗功率,影响到输出的效率;另外,需要特别注意的是,对于大功率的晶体管的PCM,应特别注意测试条件,对于散热条件不满足时,器件所能承受的PCM小于规格值。
关于耗散功就介绍完了,您有什么想法可以联系小编。
以上就是"电工优优"为大家介绍的mos管耗散功率的实际意义的相关信息,想了解更多"MOS管耗散功率的计算,mos管耗散功率的实际意义,mos管耗散功率大好还是小好,mos管耗散功率越大越好吗"相关知识,请收藏电工无忧吧。