电工优优今天要和大家分享的串激式电压互感器感应耐压试验原理方法相关信息,接下来我将从串级式电压互感器,串激式电压互感器工作原理,串级式电压互感器原理图这几个方面来介绍。
1.试验原理及方法
电压互感器进行交流感应耐压试验,也即是在互感器低压侧加上约为三倍额定电压。在一次侧感应出相应的高压来进行试验。为了防止铁芯过分饱和,应该提高电源电压的频率,采用150Hz电源进行试验。当频率超过100Hz时,为避免提高频率后对绝缘的考验加重,所以应相应地减少耐压时间,耐压时间t(s)由下式确定
t=60×100/f
用于串级式互感器耐压的150Hz电压发生器,主要有以下几种方法。
2.单相变压器组二次侧开口输出电源
利用三台单相变压器,一次侧接成星形,二次侧接成开口三角形,如图1所示。
图1:由三台单相变压器构成三倍频发生器原理图
当在一次侧加压,使变压器的铁芯过励磁时,由于是星形接法,则一次侧没有三次谐波电流,此时中性点必须悬浮不能接地,否则一次侧有三次谐波电流,会使磁通波形的三次谐波分量减小。由于铁芯中有三次谐波磁通,每相绕组便感应出三次谐波电动势,当励磁电流为正弦波,在铁芯饱和情况下,主磁通的波形是平顶波,这样,在主磁通波中包含了较大的三次谐波,见图2所示。
图2:平顶波磁通产生电动势的波形
(a)电流波形与磁通波形关系;(b)磁通与电动势关系
3.利用三电感过励磁构成倍频电源
当铁芯电感线圈接成星形,并施以三相电压过励磁时,则在中性点感应出三倍频电动势,其三次谐波产生原理同上所述。因磁通为平顶波,所以可分解为1l、3、5、7次等谐波,当过励磁达1.5倍时,三次谐波分量可达基波的40%。各次谐波在三相电感线圈上产生自感电动势,而正序和负序谐波在中性点之和为零,所以在中性点仅感应出三次以上的零序分量。
三电感过励磁可利用一台15kVA三相自耦调压器反加压构成,原理如图三所示。
图3:由自耦调压器构成三倍频发生器原理图
接线时,380V三相电源加到调压器输出端,即可调触头端,开始,调压器输出端调到电压最大位置,输入端开路,合上电源后将输出触点向减小输出电压方向调节,直至铁芯饱和,在中性点产生出150Hz电压。调节时注意监视输入电流的大小。
4.组合变频电源
利用可控硅变频器组合电源进行倍频耐压更为方便,变频电源原理框图见图4。
图4:变频电源原理框图
变频电源的输出频率可从150 -200Hz由编程调节锁定,具有体积小、调压方便等优点。如使用2kW的变频电源,即可满足对110、220kV的互感器进行试验要求。
5.用三相自耦调压器构成倍频发生器进行110KV互感器试验
利用三相自耦调压器过励磁,由中性点输出三倍频电源,其试验接线如图5所示。
图5:自耦调压器倍频发生器原理图
图5中,试品TV为JCC-110型电压互感器,试验时考虑容升为5%。
试验记录:U1=154V,I1=16.5A,P=-840W,U2=270V。
在按图5进行试验时,TR1选用15kVA三相手动自耦调压器作为过励磁发生器TR2为3~5kVA单相自耦调压器。TR1合电源前,可调端子放置为最高电压处,逐渐向低电压调,即增大励磁;TR2的调压端也放置在最高电压处,当示波器观测到三次谐波电压时逐渐向低端调,使输出端电压上升。为了避免回路产生谐振,在adxd接2个220V、300W白炽灯,两个灯泡串联连接起阻尼作用,以防止电压过高突然烧坏灯丝使回路无阻尼。
由于过励磁产生的三倍频电源含有较大的5次、9次等高次谐波,因此测量电压的表计应采用峰值电压表。为了改善试验电压波形,有条件时可在三倍频发生器的输出端加接LC串联谐波回路,滤掉250Hz和450Hz谐波,LC值可按下式计算
f=1/2π√LC
LC=(1/2πf)2
选择滤波电容时,不应显著增加回路的无功电流,一般可进取电容值为4~8μF。
以上就是"电工优优"为大家介绍的串级式电压互感器的相关信息,想了解更多"串激式电压互感器感应耐压试验原理方法,串级式电压互感器,串激式电压互感器工作原理,串级式电压互感器原理图"相关知识,请收藏电工无忧吧。